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Highlights 

• Beach showers are a point-source of contamination to coastal surface waters 
• Sunscreen contamination was highest at beaches with the highest visitation rates 
• Concentrations of UV sunscreens pose a threat to terrestrial and aquatic receptors 
• Apply mitigation options to reduce sunscreen pollution from beach showers 

Keywords: oxybenzone, benzophenone-3, octocrylene, risk assessment, coral reef, octisalate, 
octinoxate, 
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ABSTRACT 

In 2019, sands in nearby runoff streams from public beach showers were sampled on 
three islands in the State of Hawaii and tested for over 18 different petrochemical UV filters. 
Beach sands that are directly in the plume discharge of beach showers on three of the islands of 
Hawaii (Maui, Oahu, Hawai’i) were found to be contaminated with a wide array of 
petrochemical-based UV-filters that are found in sunscreens. Sands from beach showers across 
all three islands had a mean concentration of 5,619 ng/g of oxybenzone with the highest 
concentration of 34,518 ng/g of oxybenzone at a beach shower in the Waikiki area of Honolulu. 
Octocrylene was detected at a majority of the beach shower locations, with a mean concentration 
of 296.3 ng/g across 13 sampling sites with the highest concentration of 1,075 ng/g at the beach 
shower in Waikiki. Avobenzone, octinoxate, 4-methylbenzylidene camphor and benzophenone-2 
were detected, as well as breakdown products of oxybenzone, including benzophenone-1, 2,2'-
dihydroxy-4-methoxybenzophenone, and 4-hydroxybenzophenone.  Dioxybenzone (DHMB) 
presented the highest concentration in water (75.4 ng/mL), whereas octocrylene was detected in 
all water samples. Some of these same target analytes were detected in water samples on coral 
reefs that are adjacent to the beach showers. Risk assessments for both sand and water samples at 
a majority of the sampling sites had a Risk Quotient >1, indicating that these chemicals could 
pose a serious threat to beach zones and coral reef habitats. There are almost a dozen mitigation 
options that could be employed to quickly reduce contaminant loads associated with discharges 
from these beach showers, like those currently being employed (post-study sampling and 
analysis) in the State of Hawaii, including banning the use of sunscreens using petrochemical-
based UV filters or educating tourists before they arrive on the beach. 
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1. Introduction 

Mass tourism has created a demographic phenomenon that congregates a high density of people 
into a relatively small and confined space (Chong, 2020; Dodd and Butler, 2019; Dodds and 
Butler, 2022).  For example, locations such as Hanauma Bay (Hawaii, USA), Maya Bay (Krabi, 
Thailand), La Concha Bay (Biscay, Spain), Playa Delfines (Cancun, Mexico), and Trunk Bay 
(U.S. Virgin Islands) can see between 2,000 to 15,000 people per day (Downs et al., 2011; 
Castillo-Pavón and Mendez-Ramirez, 2017; Downs et al., 2021; Kainthola et al., 2022). This 
demographic density, especially in a natural resource setting, can often be destructive to nearby 
wildlife habitats (Downs et al., 2022; Guabiroba et al., 2022).  One contributing factor to the 
declining ecological integrity of aquatic ecosystems is sunscreen pollution (Casas-Beltrán et al., 
2021; Downs et al., 2022).  Some locations can easily receive hundreds of thousands to millions 
of visitors a year resulting in sunscreen discharges directly from swimmers into the water 
(Downs et al., 2016; Downs et al., 2021a).  It is estimated that a thousand visitors on a beach 
using sunscreen following the recommended product instructions with a 50% sunscreen-
shedding rate from swimmers could deposit more than 36 kilograms/day of sunscreen into the 
aquatic environment (Supplemental Table 1; U.S. CDC; Diffey, 2001; Heerfordt et al., 2018; 
Cancer Council 2022). Sunscreen pollution, as a consequence of unmanaged tourism, can pose 
potential threats to the integrity of near-shore habitats and ecosystems that are in proximity to 
these popular tourist sites (NOAA, 2002). 

Some of the most common petrochemical sunscreen UV-filters include avobenzone, 
oxybenzone, octinoxate, octocrylene, octisalate and homosalate, and can induce toxicities to 
wildlife at environmentally relevant concentrations (Carve et al., 2021; Downs et al., 2021).  
Oxybenzone, being the most studied, can induce a range of reproductive and early-stage 
developmental toxicities in fish and invertebrates based on mechanisms of endocrine disruption, 
genotoxicity, inhibition of cell migration, and cell death (Schlumpf et al., 2004; Schlumpf et al., 
2008; Downs et al., 2016; Wnuk et al., 2018; Xu et al., 2021). Oxybenzone is also toxic to algae 
and plants, acting as a multi-functional herbicide, inhibiting aspects of both photosynthesis and 
mitochondrial oxidative phosphorylation (Mao et al., 2017; Zhong et al., 2019a, 2019b; Zhong et 
al., 2020). Octocrylene is a developmental and metabolic disruptor (i.e., obesogen) in species 
ranging from corals and fish to mammals, and can inhibit the Calvin Cycle of photosynthesis, as 
well as oxidative phosphorylation in plant mitochondria (Stien et al., 2019; Zhong et al., 2020; 
Ko et al., 2022).  Furthermore, octocrylene is known to degrade into benzophenone, a highly 
regulated chemical that is an endocrine disruptor, a carcinogen and a patented herbicide (Downs 
et al., 2021b; Foubert et al., 2021). Homosalate and octisalate are derivatives of salicylic acid, 
and imparts a level of genotoxicity, teratogenicity, carcinogenic proliferation and inhibits 
intracellular signaling pathways (Alamer and Darbre, 2018; Yang et al., 2018; Yazar and 
Ertekin, 2019; Thorel et al., 2020; DiNardo and Downs, 2021). Octinoxate also exhibits 
toxicities to algae and plants, as well as thyroid disruption, disruption to sexual maturation, and 
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toxicities across multi-generational exposures in fish and invertebrates (Inui et al., 2003; Lee et 
al., 2019; Zhong et al., 2020; Chu et al., 2021; Tian et al., 2021). These UV filters pose not just a 
threat by themselves, but may also act additively or synergistically with global-level pollutants, 
such as climate change factors and marine plastic debris (Wijgerde et al., 2020; Song et al., 2021; 
Liu et al., 2022; Downs et al., 2022). The environmental contamination of these UV filters is past 
the threshold of emerging concern, as a preponderance of scientific evidence has allowed these 
chemicals to be jurisdictionally regulated as a means of mitigating their pollution (Downs et al., 
2022). 

These petrochemical UV-filters are known to contaminate receiving waters from alpine 
lakes, river systems (including the respective shallow aquifers), pan-tropical coral reefs, coastal 
waters in both polar regions, as well as municipal potable water sources (Balmer et al., 2005; 
Tsui et al., 2014; Díaz-Cruz and Barceló, 2015; Emnet et al., 2015; Claudia and Magrini, 2017; 
Mandaric et al., 2017; Diaz-Cruz et al., 2019; Dominguez-Morueco et al., 2020). The most 
obvious direct source of sunscreen pollution comes from recreational water activities such as 
swimming, where sunscreen products applied to the skin are shed as a result of sweating and 
submersion (Stokes and Diffey, 1999; Poh Agin, 2005; Sivamani et al., 2010; Puccetti and Fares, 
2014; O’Malley et al., 2021). Non-point sources of sunscreen pollution can come from sewage 
discharges, municipal wastewater treated effluents, as well as from cesspits and septic discharges 
(Balmer et al., 2005; Li et al., 2007; Gago-Ferrero et al., 2011b; Cabeza et al., 2012; Bratkovics 
et al., 2015; Molins-Delgado et al., 2017; Wang and Kannan, 2017; He et al., 2019). 

A recently recognized source of sunscreen petrochemical pollution is found associated 
with agriculture; reclaimed water from wastewater treatment effluent and sludge biosolids are 
used in irrigated agriculture and as soil/fertilizer amendments to commercial agricultural settings 
(Plagellat et al., 2006; Zhang et al., 2011; Eljarrat et al., 2012; Jurado et al., 2014; Sunyer-Caldú 
and Diaz-Cruz, 2021; Cadena-Aizaga et al., 2022).  This point-source of pollution can have 
adverse impacts to crop yields, contaminate crops with these petrochemical UV-filters, and be 
associated with agricultural runoff within a watershed, ultimately discharging into groundwater, 
and freshwater and marine receiving-waters (Loraine and Pettigrove, 2006; Molins-Delgado et 
al., 2016; Serra-Roig et al., 2016; Cabrera-Peralta and Pena-Alvarez, 2018; Glover et al., 2021; 
Ramos et al., 2021; Bigott et al., 2022). Plastic aquatic debris are both a point-source for some 
UV-filter pollution (e.g., oxybenzone, benzotriazole, benzophenone-8) as well as a concentrator 
of petrochemical UV-filters; UV-filters adhere to the plastic particle surface, increasing the 
concentration of UV-filter-exposure if consumed by aquatic wildlife (Rani et al., 2017; 
Hahladakis et al., 2018; O’Donovan et al., 2020; Na et al., 2021; Santa-Viera et al., 2021; Cui et 
al., 2022). Aerosol/atmospheric distribution and deposition is a newly recognized source, coming 
directly from the use of aerosol sunscreens, volatilization from waste-water facilities, and 
through aerosolization of wave action along the shoreline (Wan et al., 2015; Shoeib et al., 2016; 
Afshar-Mohajer et al., 2018; Pegoraro et al., 2020; Du et al., 2022). 
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In many tourist-beach locations, both public and private, a freshwater shower will be 
available on the beach to allow tourists to rinse off sand and seawater from their bodies after 
swimming or sunbathing. A recent study found that the sands around the beach showers of 
Hanauma Bay, Hawaii, U.S.A. were highly contaminated with petrochemical sunscreen residues 
(Downs et al., 2021a).  The showers at Hanauma Bay were not plumbed to a municipal 
wastewater treatment system, but were discharged directly into the shallow ground or the 
effluent would pool and create runoff rivulets that ran directly through the shoreline to the 
water’s edge. This is a case of a shower being a point-source of pollution for sunscreen 
contaminants; sunscreen residues on the skin can be washed off in this shower, with or without 
soap or shampoo, which can also contain petrochemical sunscreen filters, such as oxybenzone 
and octocrylene (Supplemental Figure 2). Beach showers are global amenities; they are found 
abundantly on the public beaches along the Mediterranean, the Caribbean and Central American 
coastlines, all through the South Pacific and Oceana region, as well as along the multiple 
coastlines of the United States, including on most of the islands of Hawaii. Boat showers can 
also be sources of sunscreen contamination; many recreational vessels have freshwater shower 
amenities that discharge directly into receiving waters. 

The first objective of this study is to determine if other beach showers within the 
Hawaiian Islands are also point-sources of sunscreen contamination.  The second objective is to 
examine in a single case study whether sunscreen contamination occurs near boat moorings that 
use on-board showers. The third objective of this study is to determine whether the 
concentrations of these petrochemical sunscreens pose a threat to terrestrial and aquatic wildlife 
at these sampling locations. Finally, resource managers, conservation specialists, community 
leaders, and legislators need to know the variety of mitigation options that are available to reduce 
the pollution loads of sunscreens. In terms of how various Hawaiian jurisdictions respond to this 
contamination discovery, we provide a summary of the different mitigation options employed in 
Hawaii to combat this threat of sunscreen pollution, especially resulting from the data contained 
in this study. 
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2.  Materials and Methods  
 

2.1 Sample Collection  

Seawater samples from Hawaii, U.S.A.  were collected using precleaned one-liter amber  glass  
bottles with Teflon-lined lids (I-Chem, 300 series, VWR), at a depth of 30 cm below the surface  
of the water. Sediment samples were collected using certified pre-cleaned 250 mL amber glass  
bottles with  Teflon-lined lids. On the sand, vertices on a 15 cm x 15 quadrat were marked, and 
within the quadrat, the top 0.5-1.0 cm of surface sand was collected using a precleaned Teflon 
spatula. Sample  locations are indicated in Figures  1-4.  
 

On the island of Oahu ( Figure 1), sand  samples  were  collected  on November 19, 2019 at the 
Kuhio Beach shower in the Waikiki district in the City of Honolulu ( Supplemental Figure  
2).Sand was collected  from the shower run-off at Wailupe Beach Park (Supplemental Figure  3).   

 
On November 13, 2019, sand samples were collected on the  Island of Maui  (Figure 2) from   

the showers at Kalama Park (Supplemental Figure  4),  Kamaole Beach  Part 2 (Supplemental  
Figure 5), and Polo Beach Park (Supplemental Figure  6).  A reference sand sample  was 
collected at the beach area of the Kihei, Maui boat ramp recreational area (Figure 2, 
Supplemental Figure  7). A ll of these sampling s ites sit along the boundary of the U.S. Hawaiian  
Islands Humpback Whale National Marine  Sanctuary.  

 
From  October 26 to November 13, 2019,  sand and water samples were  collected  on the  

Island of Hawai’i  (Figures 3 and 4). Sand samples  were collected at  two locations from the  
beach shower at  the  beach park that is  the  land access to Waialea  Bay Marine Conservation and 
Land District (Figure 3B). Water samples were collected  at a  depth of approximately  30 cm  
below the surface of the water within Waialea Bay at  the locations designated in Figure 3C.  
Water samples were collected near the Captain Cooke Monument within Kealakekua Bay 
Marine Conservation District.  Two water samples were collected approximately 30 c m below  
the surface of the water on October 26, 2019 indicated by arrows in Figure 3D.  Approximately  
100 mL of shower discharge from the  commercial  recreational vessel was collected as it was  
flowing from the boat into the Kealakekua Bay receiving waters.  Sand samples were collected at  
two locations (proximal  and distal to the shower) at Mauna Lani Beach (Waikoloa  Village, 
Hawaii;  Fig. 4A; Supplemental Figure  8), at Black Sand Beach (Puako, Hawaii;  Figure 4B; 
Supplemental Figure  9), and at Kahalu’u Beach Park (Kahaluu-Keauhou, Hawaii;  Figure 4C; 
Supplemental Figure  10). As a reference for the Island of Hawai’i, sand was collected at the  
shore of Kapakuukapu (Manini Beach;  Supplemental Figure  11). Five water samples were  
collected within Kahalu’u Bay (Figure 4B).  
 

2.2 Chemicals and standards  
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189 Chemicals  - Methanol (MeOH), acetonitrile (ACN), dichloromethane (DCM), ethyl acetate  
(EtAc), formic  acid and HPLC-grade water were purchased from J.T. Baker (Deventer, The  
Netherlands)  and were all  ≥99.9% purity and included Certificates of Analysis. Aluminum oxide  
(≥99.9% purity), used as  a  clean-up agent in the pressurized liquid extraction (PLE) cells, was 
obtained from  Merck (Darmstadt, Germany). Nitrogen and argon gasses  (purchased from Air 
Liquid – Ba rcelona, Spain) were of 99.999% purity. Glass fiber filters  (1 µm)  and nylon 
membranes  (0.45 µm) fro m  Whatman  International Ltd. (M aidstone, UK) a nd syringe filters  
supplied by Dionex Corporation (Sunnyvale, CA, USA)  were used.  

The following analytical standards  (> 97% purity) w ere used:  2-Hydroxy-4-
metoxybenzophenone (oxybenzone (BP3),  dihydroxy be nzophenone (benzophenone-1, BP1), 5-
benzoyl-4-hydroxy-2-methoxybenzene-1-sulfonic acid (benzophenone-4, BP4), 4-
hydroxybenzophenone (4HB), 4,4'-dihydroxy be nzophenone (4DHB), 3-(4-tert-butylphenyl)-1-
(4-methoxyphenyl)propane-1,3-dione (avobenzone,AVO), drometrizole (UVP), dimethyl  
benzotriazole (DMBZT), octocrylene (OC), 3,3,5-trimethylcyclohexyl 2-hydroxybenzoate  
(homosalate, HMS), 2-ethylhexyl salicylate (octisalate,OS), and BP-13C were purchased from  
Sigma-Aldrich (Darmstadt, Germany). Benzophenone-2 (BP -2), 2,2'-dihydroxy-4-
methoxybenzophenone (DHMB, benzophenone-8), ethyl p-aminobenzoic acid (benzocaine, 
EtPABA), ethylhexyl methoxycinnamate (octinoxate,EHMC), and 1H-benzotriazole (BZT) were  
purchased from Merck (Darmstadt, Germany). 4-Methylbenzylidene camphor was obtained from  
Dr. Ehrenstorfer (Augsburg, Germany). MeBZT was acquired from  TCI (Zwijndrecht, Belgium). 
BP3-13C, BP3-d5, 4MBC-d4 and BZT-d4 were obtained from CDN isotopes (Quebec, Canada).  

Stock solutions of the  UV-filters  and isotopically labeled  standards were prepared at 100 
mg/L  in MeOH, and stored in the dark at  -20 °C. Separate working solutions  with UV-filters  \  
and isotopically-labeled  internal standards  were prepared at 10 mg/L  in MeOH, stored in the  
dark at  -20 °C, and refreshed weekly.  

2.3 Sample pre-treatment and analytes extraction  

The optimized and validated analytical  methods  used  for the  multiresidue  determination of the  
target compounds and isotopically labelled standards in the standard solutions and in the sample  
extracts, were based in previous procedures developed in our laboratory  (Gago-Ferrero et al., 2011;  
Downs et al., 2021a) a nd expanded for new compounds (Supplemental Table  2).  

2.3.1 Sediment  

The extraction of the  selected analytes  from the sediment samples was carried out according to the  
expanded method based on Gago-Ferrero et al.  (2011). Samples  were isolated and in-cell purified  
by pressurized liquid extraction (PLE) using an automatic system ASE 350 from Dionex. One  
gram of the lyophilized sediments  was  mixed with 1  g of activated  aluminum oxide (previously  
activated  at 130 ° C for 24 h.) in the PLE cells. Before extraction, the surrogate standard,  i.e.  BP·-
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13C, was spiked into the samples and allowed to equilibrate overnight. MeOH and the mixture 
MeOH/water (1:1, v:v) were used as extracting solvents. The 20 mL extraction was brought to 25 
mL with MeOH in a volumetric flask. An aliquot of 6 mLof this solution was passed through a 
0.45 µm syringe PFTE filter to a UHPLC-vial and further evaporated until dryness under a nitrogen 
stream using a Turbo-Vap (Zymark, Hopkin, MA). Finally, the dried extract was reconstituted 
with 500 µL of the IS mixture solution containing the rest of the isotopically labelled standards, 
i.e. BP3-d5, 4MBC-d4 and BZT-d4. 

2.3.2 Water 

The extraction of the 20 petrochemical, ultraviolet filters (parent and transformation products) and 
hormones from water samples followed the expanded method based on Downs et al. (2021). 
Briefly, 100-200 mL of water sample was loaded onto Strata™-X 33 μm polymeric reversed phase 
C18 solid phase extraction (SPE) cartridges (500 mg/12 mL; Phenomenex) at a flow rate of 4 
mL/min, for isolation and purification of the target analytes. Then, the cartridges were washed 
with 3 mL of HPLC-grade water and dried under a current of N2. The cartridges were eluted at a 
flow rate of 3 mL/min, first with 8 mL of a mixture solution of EtAC and DCM (EtAc/DCM (1:1, 
v:v), and then with 2 mL of DCM. The two extracts were joined and evaporated with nitrogen until 
near dryness and then transferred into a UHPLC-vial for full evaporation. Reconstitution of the 
dried extract was performed with 0.5 mL of HPLC-grade water containing the isotopically labelled 
internal standards. 

2.4 UHPLC-(ESI)-Orbitrap MS analysis 

The chromatographic separation of all analytes was performed in an Acquity UHPLC C18 column 
(100 Å, 1.8 μm, 2.1 ×100 mm) with a guard column containing the same material, using an Acquity 

ultra-high-performance liquid chromatograph (UHPLC) (Waters Corporation, Milford, Ma, USA) 
coupled to a Q-Exactive Orbitrap mass spectrometer (Thermo Scientific, Waltham, Ma, USA). 
Electrospray ionization in positive (ESI+) and negative (ESI-) modes was selected as the ionization 
technique. In ESI+, the mobile phase consisted of a mixture of MeOH and HPLC-grade water, 
both 0.1% in formic acid. The elution gradient started with 5% of MeOH, increasing to 75% at 
min. 7 and to 100% at min. 10. Afterwards, it was decreased from initial conditions for at least 17 
min and were maintained 20 min until equilibration. 

Five of the 18 compounds were analysed under negative ionization mode (i.e., BP4, E1, 
E3, HMS, and OS). In ESI- mode, the mobile phase consisted of the same solvents as in positive 
polarity, but in this case, both were 5 mM in ammonium acetate. The elution gradient started with 
5% of MeOH, increasing to 50% at 3 min., to 90% at 6 min., and to 100% at 13 min.  Then, it was 
decreased to 5% in one minute and maintained until 20 min. for equilibration. 
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In both modes of analysis, the flow rate was set at 0.3 mL/min, the oven temperature at 40 
ºC and the injection volume at 10 µL. Mass spectrometry detection was performed under parallel 
reaction monitoring (PRM), specifying the compounds of interest in the inclusion list. Precursor 
selection combined with high-resolution product ion scanning was tuned to provide enhanced 
selectivity. 

All samples were measured in duplicate and the reported value corresponds to the mean of 
the two determinations. All the compounds were quantified and confirmed with the two most 
intense transitions by the isotope dilution approach. 

Supplemental Tables 3 and 4 report the validation parameters for the target substances in water 
and sand samples, respectively. The methods showed generally good average recoveries calculated 
from two spiking levels in sand (77 – 125%, spiking levels 5 and 50 ng/g) and water (56-110%, 
spiking levels 5 and 50 ng/L): n=5, RSD: 5-22% and low LODs ranging between 0.01– 0.06 ng/g 
dw in sand and 0.001– 0.007 ng/mL in water, and LOQs ranging between 0.03– 0.11 ng/g dw in 
sand and 0.005- 0.0022 ng/mL in water) in a wide linear range (1-700 ng/mL for water and 1-700 
ng/g for sand) for all compounds (r2 >0.991), allowing the reliable analysis of the target UV filters 
in water and sediment samples. LODs and LOQs, both instrumental and methodological, were 
calculated as the concentration of each compound giving a signal-to noise ratio of 3 and 10, 
respectively. The precision of the method was evaluated by analyzing five consecutive times the 
corresponding matrices (water or sand extracts) spiked with a standard mixture of the analytes at 
100 ng/L; intraday values were < 12% and inter-day precision was < 23%) indicating a good 
method precision. 

2.5 Analytical chemistry quality assurance and quality control 

Background contamination in the laboratory is known to be potentially an issue in petrochemical 
UV filter analysis at environmentally relevant concentration levels. To avoid this, all non-
volumetric glassware used was previously washed sequentially with HPLC grade water, ACN, 
MeOH and acetone, and heated overnight at 380 °C. In addition, gloves were used throughout the 
handling and preparation of the samples. Labware was always wrapped with aluminium foil, the 
PLE extraction vials were used from amber glass, and they were stored in the dark to avoid 
photodegradation. In every batch of samples, a procedural blank, a control standards mixture 
solution (Quality Control solutions, to check for instrumental drift in response factors), and two 
pure MeOH blanks (indicators of instrument contamination) were inserted randomly among 
samples to be measured. 

2.6 Risk Assessment Method 
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The European Commission guidance was used to calculate risk quotients (RQs) for the 
oxybenzone and octocrylene in water samples, and oxybenzone, octocrylene, and 4-
methylbenzylidene camphor in sand samples. The European Commission methodology has been 
adopted in the development of several ecological risk assessment guidelines (ECHA 2008; 
European Commission 1996, 2003; Environment Canada 2013; European Medicines Agency 
2006; Dussault et al., 2008; Hernando et al., 2006).  Using this method, the actual or predicted 
environmental concentration (MEC) is compared to a derived known or Predicted No-Effect 
Concentration (PNEC). In cases where the NOEC was not known, but the Lowest Observable 
Effect Concentration (LOEC) was known, the LOEC was divided by two to calculate a predicted 
NOEC (ECHA, 2008). For RQ determinations, an assessment factor of 1000 was selected to 
address the differences between laboratory data and natural conditions to account for interspecies 
differences and intraspecies differences. Thus, the RQ = (MEC)/(PNEC, NOEC,LC50 or EC50) x 
1000 (Chapman et al., 2009; Dussault et al., 2008; Means et al., 1993; Environment Canada, 
2013; Belanger et al., 2021). Toxicity reference values were obtained from the published 
literature (Tables 1 and 2, Supplemental Table 5). 

A number of endpoints not commonly used as regulatory toxicological endpoints are 
included in Tables 1-2 and Supplemental Table 5. However, all of these toxicity endpoints can 
be argued to reflect aspects necessary for population-level survival and reproductive fitness in 
real world situations (Goulson, 2013; Moore et al., 2004; Ruel and Ayres, 1999; Schafer et al., 
1994). 

The criteria for Levels of Concern for organisms in ecosystems for interpreting the RQ is 
based on a four-tier ranking system (European Commission 1996; Sanchez-Bayo et al. 2002; 
Hernando et al. 2006). Based on the American National Standards Institute recommendations for 
Hazard Communications, a color scheme is used for ease of visualization of the Levels of 
Concern for this methodology (Tables 1 and 2, Supplemental Table 5). Red boxes represent 
RQ values greater than 1, indicating an unacceptable risk requiring immediate action, and is the 
standard criteria for the Level of Concern within the European Commission framework. Orange 
boxes represent values between 0.5 and 1.0; a moderate concern of an acute impact. Yellow 
boxes represent values between 0.1 and 0.49, indicating a lower risk of impact. White boxes 
indicate no concern of danger with values below 0.1. 
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3. Results 

3.1 Measured Environmental Levels 

Petrochemical UV-filters were measured at 12 locations across three islands of Hawaii 
(Figs. 1-4). For oxybenzone, the highest concentrations were found at popular tourist beach 
showers; the highest being the Kuhio Beach shower in Waikiki at 34 mg/g dw (dry weight) (Fig. 
1). Two beach showers did not have quantifiable oxybenzone concentrations: Wailupe Beach 
park shower in Oahu and Polo Beach Park shower in Maui (Figs. 1 and 2). Both parks are 
visited predominantly by locals and not by tourists. At shower locations that sampled both a 
proximal and distal length from the shower, only the proximal locations had measurable 
concentration of oxybenzone, while the distal locations had non-quantifiable levels or much 
lower levels as compared to the proximal location (Fig 3B, Fig 4A-C). The two non-shower 
sites, Kihei Boat Beach (Fig. 2B, Supplemental Figure 6) and Kapakuukapu (Manini Beach; 
Supplemental Figure 11) had no quantifiable levels of oxybenzone or any other target analytes. 

Breakdown products associated with oxybenzone, including benzophenone-1 and DHMB 
were concomitant with oxybenzone contamination; the exception was Black Sand Beach. At 
most oxybenzone-contaminated sites, 4-hydroxybenzophenone (4HB) was detected with the 
exception of Polo Beach (Fig. 2B). 

Avobenzone levels were highest at 1, 085 ng/g dw at Kuhio Beach and ranged from 100 
ng/g dw to 500 ng/g at the high-density tourist beaches in Maui and Hawai’i Islands. 
Avobenzone levels at the less-frequented beaches such as Wailupe, Polo, and Wailea beaches 
were around 1-5 ng/g dw (Figs. 1, 2B, 3A). Mauna Lani (Fig. 4A) and Black Sand (Fig. 4B) 
beaches were groomed (all biological and plastic debris remove, sands were raked) by local 
grounds keepersthe evening or morning before the samples were collected and had no 
quantifiable levels of avobenzone. 

Kuhio Beach had the highest levels of octocrylene (1,075 ng/g dw; Fig. 1), while the 
other three highly visited tourist-beach sites (Kalama, Kamaole, and Kahalu’u beach parks) had 
octocrylene ranging from 204 ng/g dw to 686 ng/g dw of octocrylene. The more reclusive sites 
had relatively low concentrations such as 7 ng/g dw (Wailupe Beach Park, Fig. 1) to no 
quantifiable levels at Mauna Lani and Black Sand beaches, with the exception of the distal site of 
Mauna Lani, which had 61 ng/g octocrylene (Fig. 4A). 

Octisalate and homosalate were not detected in any of the sand samples. 4-
methylbenzylidene camphor was only detected at the Wailupe Beach Park (Fig. 1A, 
Supplemental Fig. 3). 
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A lateral transect was designed and sampled at Waialea Bay (Fig. 3C). Site 3 water-
sample from Waialea Bay was closest to the rivulet that ran from the Waialea Bay beach shower 
to the tidal shoreline. Site 3 had the highest concentrations of all measurable target analytes, 
except for octisalate. It should be noted that benzophenone-2 was also detected in all three water 
samples. 

A four-point transect, and a two-point transect was designed to collect water samples in 
Kahalu’u Bay where Site 1 is the origin of both transects and the entry point for many swimmers 
as well as the receiving waters for the rivulet that flows from the beach shower (Fig. 4D, 
Supplemental Figure 10). Site 1 had the highest concentrations of avobenzone, oxybenzone and 
its break-down products. Site 2 had no quantifiable levels of oxybenzone. Concentrations for 
octocrylene were equal between Site 1 and Site 5 but were highest at Site 2. There was no 
consistent pattern regarding concentrations among the five sites for octisalate. 

The water samples were collected on the northern end of Kealakekua Bay, near the 
Captain Cooke monument.  There is no beach shower at this location, but visitors can wash off 
with fresh water if they board a large commercial tourism vessel, similar to the one in Fig. 3D. 
which can hold as many as 16 to 90 swimming customers.  The shower is near the water-
entry/exit point on the vessel, and shower-discharge was sampled as it was cascading into the 
receiving waters of Kealakekua Bay. No target analytes were detected. Measurable 
concentrations of target analytes were found at the two collection sites near the moored vessel 
shown in Fig. 3D. 

3.2 Risk Analysis 

Oxybenzone concentrations in beach sands at Kuhio, Kalama, Kamaola, Waialea (Site 1), Black 
Sand (Site 2) and Kahalu’u (Site 1) exhibited RQs all above 1 (Table 1). Mauna Lane (Site 2) 
and Black Sand (Site 1) exhibited lower risk levels for both mortality and growth rate in Eisenia 
fetida. Kahalu’u (Site 2) exhibited moderate to no risk for all of the multi-species parameters 
examined. 

Octocrylene concentrations in beach sands at Kuhio, Kalama, Kamaola, Wailea (Site 1), 
and both sites within Mauna Lani and Kahalu’u beach sites had RQ values above 1 (Table 1). 
Octocrylene was measurable at the Wailupe Beach Park site, but exhibited a moderate level of 
risk (RQ = 0.71). 

4-Methylbenzylidene camphor is not a U.S. Food & Drug Administration approved 
sunscreen active ingredient, but it is used in fragrances as a UV-stabilizer. It was detected in 
sands only at the Wailupe Beach Park site. Despite it not being allowed as an active SPF 
ingredient in U.S.-based sunscreen products, we cannot rule out that tourists from countries 
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where this UV filter is approved, such as the European countries and Australia, which is allows 
up to 4% as a sunscreen ingredient. The RQ values in the three species included in this risk 
assessment range from moderate to serious concern to ecological integrity (Supplemental Table 
5). 

Risk quotients were generated for all water samples from sites that had measurable 
amounts of oxybenzone, which means Kealakekua (Site 1) and Kahalu’u (Site 2) had an RQ of 0 
(Table 2). All oxybenzone-contaminated samples exhibited RQ values for all coral cell species 
and all species parameters above 1, with the exception for Kealakekua Bay (Site 2) which had 
RQ values of serious concern. Risk quotients generated for octocrylene at all 8 water-sampled 
sites predominantly exhibited RQ values above 1, indicating a severe condition to coral and other 
invertebrates, as well as fish (Table 2). 
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419 4.  Discussion  
 

The  U.S. Environmental Protection Agency (U.S. EPA) defines a point-source of pollution as  
“any single identifiable source of pollution from which pollutants are discharged” and that  a  
pollutant is a substance at  a specific concentration that alters the  chemical, biological, or physical 
characteristics of a navigable receiving w ater (U.S. NOAA;  U.S. Federal Water Pollution 
Control Act Amendments of 1972). The risk assessment conducted in this study allows for the  
argument that the sunscreen  chemical concentrations measured at these locations can be  
classified as pollutants, which makes beach showers a point-source of pollution. Under the  U.S. 
Clean Water Act, beach showers should cease discharging or apply for a permit under the  
National Pollutant Discharge  Elimination System (U.S EPA, 2022).  
  
 There was an unexpected incongruence in the concentration of s unscreen contaminants in 
sands at locations where  proximal  and distal samplings  were conducted (e.g., Black Sands  
Beach, Kahalu’u Beach). Our first conjecture for this incongruence was based on hydrophobicity 
(i.e. n-Octanol/water partition coefficient, Kow) of the compounds in relation to basaltic or 
aragonitic sands  or that microplastics  in the sand were a confounding factor (Supplemental  
Table 2) ( Schaffer et al., 2012; Santa-Viera et al., 2021). Instead, after speaking with State  of 
Hawaii  resource managers and resort  grounds keepers, we learned that beaches are groomed 
almost  every da y between 4 am to 6 am.  This  is done to remove gullies created by shower runoff 
and surface depressions  made by beach-visitors  for both aesthetic and liability issues (i.e. these  
can be obstacles that physically harm beach-visitors).  This  grooming i ncludes both raking and 
plowing the beach, so that a final smooth beach surface is obtained, and both biological and 
marine plastic debris are removed.   This daily disturbance of plowing under surface sands  and  
bringing-up sands 4-6 cm below the surface could easily skew expected concentrations.  
 
 Tidal flux can liberate these  sunscreen contaminants  from sands  during high tides and 
result in diurnal pulses of contamination into the  adjacent  water column. Some workers  make  
claims that water solubility is a critical factor for seawater contamination. There is some merit to 
this line of inquiry, but also a susceptibility to abuse;  it should never be assumed that seawater, 
especially coastal seawater in highly developed coastlines  is  akin to “pure  laboratory seawater”  
and that natural waters are  without a  high level of  biological or  dissolved organic/carbon matrix.  
The reality is just  the opposite, many of these waters are  loaded with high l evels of sea  
dissolved-organic-matter  (SeaDOM)  and total dissolved carbon, partially  resulting from  
terrestrial runoff (a gricultural runoff, road runoff, residential  landscape runoff, etc),  and point  
and non-point source  sewage discharges. Even shedding of sunscreens  from  swimmers 
contributes to the SeaDOM composition of a receiving water ( i.e.  manifestation of the sunscreen 
sheen on the surface of the water). T his increase in dissolved organic matter  can  increase the  
solubility and suspension of petrochemical  UV-filters and any other polyaromatic hydrocarbons  
within the water column versus  its  hydrophobic  partitioning to the surface of the water 
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(Whitehouse, 1985; Bejarano et al., 2005; Lou et al., 2006; Mopper et al., 2007; Shang et al., 
2015). 

This study provides an anecdotal observation that there is a relationship between beach 
visitation rate and UV filter-contaminant concentration, the higher the visitation, the higher the 
concentration. This seems reasonable, but a more formal study should be conducted that 
examines the relationship and the strength of this correlation. If this relationship is true, then 
resource managers may want to focus on mitigating contamination loads at the most visited sites. 
Measuring UV filter contamination analysis can be expensive and readily accessible for most 
locations. The estimation for sunscreen loads at a site based on the formula in Supplemental 
Table 1 can be used to estimate the threat of a visitors if a “no mitigation policy” is enacted, as 
well as hypothesize/estimate the impact of a proposed mitigation policy.  The Carrying Capacity 
estimation for a natural resource is notoriously inaccurate and fraught with conflicted or 
contrived political and economic influences (Lindberg & McCool, 1998; Hawkins et al., 1999; 
McCool and Lime, 2001; Ponting and O’Brien, 2015; Singh, 2015; Tacconi and Williams, 2020; 
Wall, 2020).  Sunscreen load calculation, with accurate visitation rates at a location, could 
provide a basis for more exact carrying capacities, especially if integrated with simple hazard or 
risk assessments (Thomas et al.,2005; Butler & Dodd, 2002). This study should hopefully inspire 
risk assessors and social and municipal managers to develop new methods for generating 
accurate tourism carrying capacity models of aquatic and coastal natural resources based on 
sound ecological risk assessment theory (Raimondo & Forbes, 2022; Sun et al., 2022). 

Beach showers may not be the only point-source of sunscreen pollution; boat showers are 
another possible point-source of pollution.  In Kealakekua, the commercial vessel we collected 
discharge from did not contain detectable levels of sunscreen contaminants. This vessel is an 
irregular example, because it visits the Kealakekua marine protected area and must adhere to a 
state-issued mooring permit not to sell or have on board petrochemical-UV sunscreen products 
(Supplemental Figure 12). Furthermore, this company (Fair Winds Cruises) has an active 
customer-education program that engages all their customers in using non-petrochemical-UV 
sunscreens, even providing free mineral sunscreens to all customers (Supplemental Figure 13). 
The measurable levels of sunscreen contaminants in Kealakekua indicates that the likely source 
is coming from individuals on other personal and commercial craft that can become point-
sources of sunscreen contamination because they are not required to adhere to the permit 
regulations prohibiting petrochemical sunscreens (Supplemental Figure 12). To reduce the 
impact of sunscreen pollution within the Kealakekua marine protected area, mitigation options 
should be considered and implemented that include all visitors to Kealakekua. 

The threat to beach and near-shore habitats based on the risk assessments is considerable 
(Tables 1 and 2, Supplemental Table 4). Beach showers are all located in the Upper Zone of 
beach habitats and can contaminate middle and lower beach zones via rivulets created from the 
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shower discharge. For terrestrial risk quotients, the only species available were soil species not 
often associated with beach habitats, or freshwater larval forms that associate with submerged 
sediments (Gautam et al. 2022).  Sunscreen pollution intrudes upon all three zones of beach 
habitats, and model species that are more appropriately representative of beach habitats should 
be included in ecotoxicological studies to create more relevant risk assessments. These include 
Ghost crabs (subfamily Ocypodinae), fishery-related crabs such as Kona (Ranina ranina), 
Kuahonu (Portunus sanguinolentus), and Samoan (Scylla serrata) crabs where part of their 
lifecycle is spent within beach habitats, as well as plants and macroalgae (e.g., grass, Hawaiian 
limu) and even sea turtle egg development (Titcomb et al., 1978; Thomas et al., 2013). 

4.1 Sunscreen pollution mitigation options 

Within social and political frameworks, it is often hoped that science provides a context and 
justification for action in mitigating pollution. Mitigation of pollution usually proceeds along 
three main strategies: reduction of contamination (Strategy 1), prohibition of contamination 
(Strategy 2), and the removal of the contamination (Strategy 3).  In the case of Hawaii, based on 
the data presented within this study and in other concordant scientific efforts, all three strategies 
are being implemented to mitigate the impacts of specific aspects of sunscreen pollution (e.g., a 
specific sunscreen product ingredient) (Downs et al., 2016, 2021a). 

The dominant strategy used to reduce contamination (Strategy 1) of a pollutant is 
public outreach and education.  In the case of Hawaii, and specifically in several Hawaiian beach 
parks and Marine and Land Conservation Districts (i.e., marine protected area), tourists and 
locals are encouraged to wear sunscreen products that do not contain ingredients that may pose a 
threat to biological/ecological integrity.  In the case of Keleakakekua Marine and Land 
Conservation District, the major commercial tourist vessel company exhibits literature and 
educational videos about the problem of sunscreen pollution, and how consumers can contribute 
individually to addressing the problem (Supplemental Figure 13). In the case of Kahalu’u Bay 
Beach Park, the Kahalu’u Bay Education Center directly engages with tourists visiting the beach 
regarding the issue of sunscreen pollution, and advocates which ingredients they should avoid.  
Besides advocating for using only U.S. Food and Drug Administration’s category-1 GRASE 
(Generally Recognized As Safe and Effective) sunscreen products, they recommend that visitors 
wear UPF (Ultraviolet Protection Factor) sun-protective clothing which reduces the use of 
sunscreen product application to a body by more than 50%, while ensuring continuous high-level 
UPF protection that does not degrade and shed from the skin while swimming (Supplemental 
Figure 14). 

Employing rational and compelling arguments based on sound scientific information 
to tourists regarding what their sunscreen products could do if levels reach an action threshold of 
pollution is thought to increase the likelihood of adopting conservation-consumerism behavior, 
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thereby reducing sunscreen chemical contamination in a given area. Kahalu’u Bay Education 
Center was one of the first organizations to both conduct environmental contamination surveys 
of their marine managed area, as well as soliciting U.S. NOAA to generate risk assessment 
quotients of their contaminant data (Supplemental Figure 15). This information was translated 
into easy-to-access infographics and educational material and presented to tourists as banners 
and handout literature. 

A second tactic in the strategy to reduce contamination loads (Strategy 1) is to regulate the 
number of visitors to a geographic location. One example of this was the complete shutdown of 
Maya Bay, Thailand for almost three years to allow for ecological recovery.  After this approach, 
Maya Bay regulators took a more nuanced approach by limiting the number of visitors per day to 
a location, or to close the location to visitors for a set number of days per week.  Hanauma Bay, 
Hawaii had once adopted both approaches, limiting the number of visitors to 1,500 persons/day 
and shutting the Bay down to visitors Monday and Tuesday of every week 
(https://www.honolulu.gov/parks-hbay/information-fees.html). In the 2nd quarter of 2021, despite 
ecological impacts of overtourism, the city of Honolulu abandoned the former policy, and now 
visitor numbers are no longer regulated. Hanauma Bay sees more than 2,000 visitors/day (City of 
Honolulu, 2022), contributing to more than an estimated metric ton of sunscreen per month 
(Supplemental Table 1). This tactic’s effectiveness could be optimized with a commitment to 
conservation over commercialization so a legitimate carrying capacity model, merged with 
contaminant surveys and risk assessments, can measurably mitigate visitor impacts. 

A second strategy of mitigation is the prohibition of the sale or use of targeted products 
that contain specific UV-filters, such as oxybenzone, octinoxate, and octocrylene.  Within this 
strategy are a number of tactics. One tactic of Strategy 2 is the prohibition of specific UV-filter 
containing sunscreen products in a geographic area.  The prohibition of petrochemical UV-filter 
products as part of the mooring permit in the Keleakakekua Marine and Land Conservation 
District is an example of prohibition in a geographic jurisdiction, especially a marine protected 
area (Supplemental Figure 12). A second tactic of Strategy 2 is the “selective prohibition” 
which bans the sale of specific ingredients in a jurisdiction, the most famous example of this is 
the 2018 Hawaii Act 104 that regulates the sale and distribution of oxybenzone and octinoxate 
sunscreen products in the State of Hawaii (Supplemental Figure 16). This study was conducted 
immediately before the COVID lockdowns of 2020 and before the full implementation of Hawaii 
Act 104 (implemented on January 1, 2021), so future studies will be able to document the 
effectiveness of this mitigation tactic. 

A third tactic of Strategy 2 is the Precautionary Principle approach, which is the 
prohibition of environmental contaminants that are scientifically documented to induce 
ecotoxicities at environmentally relevant concentrations (Downs et al., 2022).  A measure based 
on this precautionary approach was adopted by the County of Maui which prohibited all 
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petrochemical sunscreens that have not been recognized as GRASE (Generally Recognized As 
Safe and Effective) by the U.S. FDA and would remain prohibited until these chemicals can be 
proven not to pose a threat to ecological receptors. In November 2021, the Maui County Council 
passed Ordinance 5306 (https://www.mauicounty.gov/DocumentCenter/View/130826/Ord-5306; 
Supplemental Figure 17), banning the sale, distribution and use (without a prescription) of all 
U.S. FDA non-GRASE sunscreens, effective October 1, 2022. This legislative action was 
supported by the Hawaii State Department of Land and Natural Resources (DLNR) as a crucial 
policy to protect its terrestrial, freshwater and marine ecosystems (DLNR, 2022 press release).  

Implementation of this Precautionary approach regarding petrochemical sunscreen 
prohibition requires public education efforts (Strategy 1, Tactic 1) to ensure both broad public 
compliance and persistent behavioral fidelity. Especially in the early period of the ordinance’s 
implementation, public education could be coupled with providing free-access to FDA-GRASE 
sunscreen products to beach visitors. It could aid compliance and public endorsement of the 
policy, especially in the early period of Ordinance 5306, by coupling public and consumer 
education with accessibility to beach visitors with a U.S. FDA-GRASE sunscreen. If sunscreen is 
one of a number of measures to protect public health from the damaging effects of over-exposure 
to the sun, then ecologically safer sunscreen products can be made accessible to ensure 
compliance to mitigation tactic #3 (Precautionary Approach).  Fortunately, pursuant to the 
passage of Ordinance 5306, DLNR installed four mineral sunscreen dispensers at two South 
Maui marine protected areas.  The 2022 Hawaii State Legislature is debating whether to expand 
this tactic and to install similar dispensers throughout the State of Hawaii. Along with greatly 
diminishing the harmful chemical impacts, the new law may also benefit local businesses 
through stimulating increased demand for FDA-GRASE mineral sunscreens, several of which 
are produced and sold by local Maui companies. 

A fifth tactic of Strategy 2 is the temporal prohibition of the use of a sunscreen product in 
a geographic/jurisdictional locality.  This is often employed during the most sensitive aspects of 
the lifecycle of a keystone species (e.g., lunar-influenced spawning of coral, fish, sea urchins, 
among others). For the case of Kahalu’u Bay Beach Park, the entire Park and the Bay are closed 
to visitors for a duration of time (i.e. 2-7 days) during the lunar spawning of the coral genus, 
Pocillopora meandrina (Supplemental Figure 18). Many marine species, especially corals and 
fish, will have a very defined duration in which to spawn (full moon) of a single month for the 
entire year.  Several studies have shown that certain petrochemical UV-filter ingredients can be 
toxic to gametes and may even prevent successful fertilization events (Blüthgen et al., 2012; 
Coronado et al., 2008; Ghazipura et al., 2017; Rehfeld et al., 2018; Xu et al., 2021). 
Fertilization/spawning events may not be the only critical facet of an organism’s life cycle.  In 
corals, fish and mammals, environmentally relevant oxybenzone-exposure in utero or during 
embryonic development may result in disease, ranging from morbid deformities and bleaching in 
coral planulae to Hirschsprung Disease from exposure during the first trimester in mammals and 
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abnormal development of the nervous system in fish (Downs et al., 2016; Huo et al., 2016; 
DiNardo and Downs, 2019; Wang et al., 2021; Han et al., 2022). 

The third strategy is removal of the contaminating effluent.  There are theoretical 
technologies that are not commercially available at the time of publication that propose to 
scavenge UV-filter aromatics by adsorption using floating macrobeads released into receiving 
waters, which are then recollected for disposal (Stoye, 2017).  The most effective tactic is to 
prevent the discharge of beach/boat showers into receiving waters altogether, and instead to 
either (a) install a collection drain that pumps the shower waters directly into a municipal 
wastewater treatment system (WWTS) or (b) collects the shower waters into a secure cesspit 
container, which then can be pumped out and delivered to a WWTS for processing. 

Unfortunately, rudimentary WWTS (those that only remove solids) can be a significant 
source of environmental contamination.  A majority of petrochemical UV-filters, 
pharmaceuticals, micro- and nano-plastic ingredients in personal care products, and other 
cosmetic chemicals are not degraded or made innocuous by rudimentary sewage treatment. 
Instead, the WWTS effluent can be one of the major sources of sunscreen pollution of a coastal, 
lake and river environments.  With water scarcity and fertilizer resources becoming a global 
issue, reclaimed waters from a WWTS or its biosolids are often used in agricultural settings, and 
their run-off becomes non-point sources of sunscreen pollution.  For an effective WWTS to 
manage sunscreen pollution, it requires an advanced design that has a secondary and tertiary 
phase that removes these sunscreens contaminants through a singular process or a mixture of 
biological degradation, absorption to activated carbon, or extensive chemical/radiation 
degradation (Bavumiragira et al., 2022; Morin-Crini et al., 2022). 

Effective wastewater treatment systems (WWTS) are expensive to obtain and maintain. New 
construction of rudimentary WWTS and sewage collection lines can cost over U.S. $1million for 
1,000-5,000 people (Bode and Grünebaum, 2000). Addition of secondary treatment (i.e.., 
aeration and clarifiers) and disinfection systems are additional costs to the wastewater utility. For 
instance, the application of advanced oxidation processes (AOPs) has proven to be fairly 
effective in removing emerging contaminants, especially petrochemical sunscreens (Rizzo et al., 
2019; Imamovi ć et al., 2022); however, its cost, estimated to be in excess of €2 million a year 
hinders its wide implementation (Mainardis et al., 2020). Advanced oxidative process (AOP) is a 
chemical process which has been found to be the most effective technologies in eliminating most 
biological and organic micropollutants from the water. The AOP technologies have been applied 
to degrade and remove insecticides, herbicides and a wide variety of organic pollutants 
(Martinez-Huitle & Ferro, 2006; Xiao et al., 2016; Guelfi et al., 2017; Martınez-Huitle & 
Penizza, 2018). These advanced technologies have been shown to successfully remove more than 
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90% of the residual pharmaceuticals, endocrine disrupting chemicals (EDCs), and personal care 
products from the wastewater effluent (Esplugas et al., 2007; Trapido et al, 2007; Ikehata et al, 
2008; Lester et al., 2011; Angeles et al, 2020; Bermudez et al, 2021; Mousel et al., 2021). 

Granulated activated carbon (GAC) is an excellent adsorption media and commonly used in 
drinking and wastewater industries to remove organic compounds. It is also used to improve the 
odor, color, and taste of the water in the drinking water industry, as well as reclaimed water for 
irrigated agriculture. It is a passive system to remove contaminants from the water at very low 
cost. GAC works by attracting the organic pollutants to attach to its surface. In the wastewater 
domain GAC has been used to remove micropollutants and phosphorus (Altmann et al., 2016; 
Benstoem et al., 2017), antibiotics (Choi et al., 2008), perfluoroalkyl acid (PFAA) (Inyang & 
Dickenson, 2017) and perfluorinated surfactants (Ochoa-Herrera and Sierra-Alvarez, 2008) 
among other pollutants. GAC adsorption is an effective treatment for wastewater when the 
dissolved oxygen carbon (DOC) contents are between 10 to 20 mg/L (Bui et al., 2016). 
However, GAC-based systems, by themselves, are not efficient in removing many pollutants of 
high concern including UV sunscreens (Glover et al., 2021).   

Ideally, Hawaii’s and any coastal beach-shower wastewater should be collected into a 
holding tank and processed through an AOP treatment system to degrade organic pollutants 
including the UV sunscreen chemicals followed by a nanomembrane (NM) filtration system. 
This combination of AOP-electrical chemical reactor and nanomembrane filter could degrade 
and remove a majority of residuals from the shower water and produce a clean effluent that can 
be safely released into receiving waters. If the objective is to eliminate only biological pollution 
such as bacteria and viruses, an AOP system based on ozone, H2O2, or peracetic acid can be a 
viable solution. However, if the goal is to eliminate organic chemicals and micropollutants from 
the wastewater effluent then an electric-chemical reactor-based AOP treatment system followed 
by nanofiltration should be a strong consideration.   

5. Conclusion 

Beach shower and boat discharges can be point-sources of sunscreen pollution. There is a trend 
where the most visited the beach by tourists, the higher the concentration of sunscreen pollutants. 
In 2018, The State of Hawaii passed a law that would ban oxybenzone and octinoxate beginning 
in 2021.  The public education campaign associated with being “Hawaii Compliant”, even in 
2019, may have contributed to the reduced contamination of oxybenzone at these Hawaii beach 
locations. Beach shower discharges, especially with the use of beach grooming, can potentially 
result in distributing the contaminants over the entirety of the beach, impacting crab, annelid, 
monk seal, sea turtles, migratory birds, and plant/algal species within these beach habitats. 
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Industry and governments need to invest in the ecotoxicological sciences to determine the effects 
of sunscreen ingredients on beach habitat species, so that risk assessments can be incorporated 
into the drafting of more valid and verifiable carrying capacity models. Many of these locations 
sampled in this study are multi-jurisdictional marine protected areas, arguing that management 
plans for all marine protected areas need to consider the impact of tourists, especially that of 
sunscreen pollution. There are a number of mitigation options that can possibly reduce pollution 
discharges and effects. There is a need for studies to determine the effectiveness of these policies 
so that other jurisdictional and management organizations can implement and optimize solutions 
for the conservation of their own natural resources. 
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Figure and Table Legends 
Figure 1. Sample site location on Oahu, Hawaii, U.S.A. and concentration of UV-filter target 
analytes in nanogram of target analyte per gram of sand (dry wt). 

Figure 2. Panel A – sampling area for Maui, Hawaii, U.S.A. Panel B – Location and 
concentration of UV-filter target analytes in nanogram of target analyte per gram of sand (dry 
wt). 

Figure 3. Panel A – Sampling area location on the Island of Hawai’i, Hawaii, U.S.A. Panel B – 
Sampling locations for the beach shower at Waialea Bay that serves the Waialea Bay Marine and 
Land Conservation District and concentration of UV-filter target analytes in nanogram of target 
analyte per gram of sand (dry wt). Panel C – Sampling location of Waialea Bay water samples 
and concentration of UV-filter target analytes in nanogram of target analyte per liter of water. 
Panel D – Sampling location within Kealakekua Bay Marine and Land Conservation District and 
concentration of UV-filter target analytes in nanogram of target analyte per liter of water. 

Figure 4. Panel A - Sampling locations for the beach shower at Mauna Lani Bay’s beach that 
serves the Island of Hawai’i, Hawaii, U.S.A.  and concentration of UV-filter target analytes in 
nanogram of target analyte per gram of sand (dry wt). Panel B - Sampling locations for the beach 
shower at 49 Black Sand Beach on the Island of Hawai’i, Hawaii, U.S.A.  and concentration of 
UV-filter target analytes in nanogram of target analyte per gram of sand (dry wt). Panel C -
Sampling locations for the beach shower at Kahalu’u Bay’s beach that serves the Island of 
Hawai’i, Hawaii, U.S.A.  and concentration of UV-filter target analytes in nanogram of target 
analyte per gram of sand (dry wt). Panel D - Sampling locations for collecting water samples at 
Kahalu’u Bay in the Island of Hawai’i, Hawaii, U.S.A.  and concentration of UV-filter target 
analytes in nanogram of target analyte per liter of water. 

Table 1. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in sand samples 
collected in the State of Hawaii associated with Figures 1-4 using the European Union method 
for Cnidarian species, invertebrate (non-Cnidarian) species, plant and algae species, and fish 
species. Color chart: RED= Severe condition for a potential toxic effect ≥1; Orange = Moderate 
threat condition for a potential toxic effect = 0.5 to 1.0; Yellow= Condition of concern 0.49 to 
0.1. 

Table 2. Risk Quotient for Acute Toxicity of oxybenzone and octocrylene in water samples 
collected in the State of Hawaii associated with Figures 1-4 using the European Union method 
for Cnidarian species, invertebrate (non-Cnidarian) species, plant and algae species, and fish 
species. Color chart: RED= Severe condition for a potential toxic effect ≥1; Orange = Moderate 
threat condition for a potential toxic effect = 0.5 to 1.0; Yellow= Condition of concern 0.49 to 
0.1. 
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